Abstract
Nano-fluidic devices have great potential in the applications of biology, chemistry, and medicine. However, their applications have been hampered by their expensive or complicated fabrication methods. We present a new and simple approach to fabricate low-cost two-dimensional (2D) nano-mold based on ultraviolet (UV) lithography and wet etching. The influence of UV lithography parameters on the width dimension of AZ5214 photoresist was investigated. With the optimized parameters of UV lithography, the width dimension of photoresist patterns had sharply decreased from microscale to nano-scale. At the same time, the influences of etching time on the over-etching amount of SiO2 film and nano-mold depth were also analyzed for further reducing the width of nano-mold. In addition, the effect of photoresist mesas deformation on the nano-mold fabrication was also studied for improving the quality of nano-mold. By the proposed method, trapezoid cross-sectional 2D nano-mold with different dimensions can be obtained for supporting varied applications. The minimum nano-mold arrays we fabricated are the ones with the dimensions of 115[Formula: see text]nm in top edge, 284[Formula: see text]nm in bottom edge, and 136[Formula: see text]nm in depth. This method provides a low-cost way to fabricate high-quality and high-throughput 2D nano-mold.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have