Abstract
Compacted powders of titanium (Ti) and carbon (C) in form of pellets were exposed to a massive amount of heat generated from the thermite reaction of Fe2O3 and Al in a graphite–steel tube mounted in a developed centrifugal accelerator machine. The centrifugal force facilitated the formation of multi-component products during the process. Titanium carbide (TiC) product is joined to an Al2O3–Fe layer, which are the products of the thermite reaction. The existence of centrifugal acceleration had a significant effect on both metallurgical alloying and mechanical interlocking between different layers of the sample to form a functional material. A mathematical model developed for this experiment to describe the speed rate of iron infiltration inside the TiC product as well as viscosity rate variation was presented. The composition, microstructure and mechanical properties confirmed the model.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have