Abstract

Detecting and mapping landslides are crucial for effective risk management and planning. With the great progress achieved in applying optimized and hybrid methods, it is necessary to use them to increase the accuracy of landslide susceptibility maps. Therefore, this research aims to compare the accuracy of the novel evolutionary methods of landslide susceptibility mapping. To achieve this, a unique method that integrates two techniques from Machine Learning and Neural Networks with novel geomorphological indices is used to calculate the landslide susceptibility index (LSI). The study was conducted in western Azerbaijan, Iran, where landslides are frequent. Sixteen geology, environment, and geomorphology factors were evaluated, and 160 landslide events were analyzed, with a 30:70 ratio of testing to training data. Four Support Vector Machine (SVM) algorithms and Artificial Neural Network (ANN)-MLP were tested. The study outcomes reveal that utilizing the algorithms mentioned above results in over 80% of the study area being highly sensitive to large-scale movement events. Our analysis shows that the geological parameters, slope, elevation, and rainfall all play a significant role in the occurrence of landslides in this study area. These factors obtained 100%, 75.7%, 68%, and 66.3%, respectively. The predictive performance accuracy of the models, including SVM, ANN, and ROC algorithms, was evaluated using the test and train data. The AUC for ANN and each machine learning algorithm (Simple, Kernel, Kernel Gaussian, and Kernel Sigmoid) was 0.87% and 1, respectively. The Classification Matrix algorithm and Sensitivity, Accuracy, and Specificity variables were used to assess the models' efficacy for prediction purposes. Results indicate that machine learning algorithms are more effective than other methods for evaluating areas' sensitivity to landslide hazards. The Simple SVM and Kernel Sigmoid algorithms performed well, with a performance score of one, indicating high accuracy in predicting landslide-prone areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.