Abstract
Abstract Landslide susceptibility zonation (LSZ) has generally been regarded as the appropriate stride to begin scientific studies in mountainous terrains to alleviate the socio-economic consequences of landslides. Application of machine learning (ML) with geographic information system (GIS) is a promising fusion of technologies, for spatial prediction of landslide susceptibility with high precision, and has been applied widely in the past. However, the literatures of ML and GIS-based LSZ gives a fuzzy conclusion upon the righteous choice of ML technique among many state-of-the-art techniques, and do not present a probe on the aptitude of ML models for township level LSZ attempts. This research investigates such concern with a case study to figure out a robust technique, which can be a benchmark approach in future case studies and various comparisons strives across the sundry genre of ML. For that, the present attempt has been anchored to four different supervised ML algorithms including artificial neural network (ANN), extreme learning machine (ELM) of neural network (NN) genre, classical ML algorithm of support vector machine (SVM) and extreme learning adaptive neuro fuzzy inference system (ELANFIS) of neuro-fuzzy system genre. The Mussoorie Township, a famed hill station in the Indian State of Uttarakhand was chosen as the area for case study. A total of 13 landslide susceptibility maps (LSM) were produced. Spatial performance of these maps was compared and statistically validated with the help of landslide inventory of the study area. Amongst the LSMs, the LSM-ELANFIS-VII of ELANFIS model with 11 number of membership functions (MF) was found to be in better agreement with all the validation measures performed. In addition to the satisfactory performance on validation, the LSMs produced through ELANFIS display a unique trace of geomorphological features on it along with pragmatic scattering of landslide susceptibility classes - an omen that exhorts graduation of GIS-based LSZ to ensemble neuro-fuzzy ML models.
Full Text
Topics from this Paper
Machine Learning
Landslide Susceptibility Zonation
Spatial Prediction Of Landslide Susceptibility
Landslide Susceptibility
Learning Adaptive Neuro Fuzzy Inference
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Oct 12, 2021
Earth-Science Reviews
Aug 1, 2020
Geoscience Frontiers
Jan 1, 2021
Geocarto International
Dec 13, 2021
Advances in Civil Engineering
Jul 22, 2021
Environmental Earth Sciences
Mar 1, 2019
CATENA
Jun 1, 2018
CATENA
Aug 1, 2020
Computers & Geosciences
Jan 1, 2022
Remote Sensing
Feb 28, 2023
Tunnelling and Underground Space Technology
May 1, 2020
Science of The Total Environment
Nov 1, 2020
Gastro Hep Advances
Jan 1, 2022
Natural Hazards and Earth System Sciences
Apr 21, 2022
CATENA
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023
CATENA
Dec 1, 2023