Abstract
With the increasing number of cardiovascular disease, some scholars studied it deeply and found that vast majority of sudden cardiac death was due to ventricular fibrillation (VF) or sustained ventricular tachycardia (VT). However, they take different treatment measures. As for patients with VF, we must take defibrillation measure; and patients with VT, we should take low-energy complex heart rate measure. If we misjudge them, the result would be horrific even taking patients’ life. So in this paper, we put up with a novel detection based on degree centrality of complex network to distinguish the VT and VF signals. We utilize the characteristics of complex network to analyze the VF and VT signal. At first, we convert the time series into complex network domain by using horizontal visibility graph. Then we analyze the complex network and extract the degree centrality as the single feature to classify the VF and VT signals. Experimental results show that the classification accuracy is up to 99.5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.