Abstract

A hierarchically structured MnF2/carbon nanotubes composite (CNTs) was successfully prepared using a novel sol-gel method. The reaction mechanism of this process was investigated by simultaneous thermogravimetric analysis, differential scanning calorimetry and mass spectrometry (TGA-DSC-MS). The composition and morphology were characterized by X-ray diffraction (XRD), Raman spectrometry, and scanning electron microscopy (SEM). The material was built from a bunch of radially arranged nano-rods crystallites with a side length of 40 nm. CNTs were dispersed on the surfaces of MnF2 particles and improved the electrochemical performance. A low discharge plateau around 0.6 V vs. Li/Li+ at 0.2 C was obtained in the first cycle with a reversible discharge capacity of 384 mAh g−1 after 100 cycles. In long-term measurements, a discharge capacity of 203 mAh g−1 at 10 C was delivered after 1000 cycles. Moreover, a first full cell (LiNi1/3Mn1/3Co1/3O2 vs. MnF2) test demonstrates the actual applicability of the MnF2/CNTs composite, as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.