Abstract

Phosphorus (P) has been overused in livestock farming, which inevitably results in high-concentration P-containing wastewater. Managing total phosphorus discharge is important to prevent eutrophication in aquatic environments, thus it is critical to develop new technologies for the removal and recovery of high-concentration phosphate. In this study, a novel calcium peroxide/attapulgite (CP/ATP) composite was developed and coupled with Fe(II) for high-concentration phosphate removal and recovery. The results demonstrated that the optimal dosage of the CP/ATP-Fe(II) process was CP/ATP = 0.25 g/L and Fe(II) = 2 mM. The pH effect on phosphate removal was minimal, while phosphate removal efficiency rose by 16.7% with the temperature increased from 10 °C to 25 °C. The co-existing ions exhibited little effect on phosphate removal, and the CP/ATP-Fe(II) process showed effective phosphate removal from the real piggery wastewater. The P content of the precipitates after phosphate removal by this process was as high as 25.82%, indicating its good potential for P recycling. A significant synergistic effect existed in CP/ATP and Fe(II) for phosphate removal, and the SEM-EDS, XRD, Raman and XPS characterization exhibited that the phosphate removal mainly relied on the in-situ-formed Fe(III) and the participation of calcium (Ca) species. Co-precipitation was the predominant mechanism for phosphate removal, and the proportions of Fe(III)–P, Ca–P and Ca–Fe(III)–P in the precipitates were 51.5%, 31.2% and 17.3%, respectively. This study provides a highly efficient process for phosphate removal and recovery from wastewater, and insights into interactions among phosphorus, iron and calcium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.