Abstract

The intention of the present work is to study the stability analysis of heat transfer enhancement occurring due to the influence of significant properties variation of fluids in the presence of thermal radiation with an aid of suspended hybrid nanofluids. The mathematical equations are converted into a pair of self-similarity equations by applying appropriate transformation. Runge Kutta Fehlberg 45th order method is applied to solve the reduced similarity equivalences numerically. The flow and energy transfer characteristics are studied for distinct values of important factors to obtain better perception of the problem. According to graphical results, heat transfer enhancement is higher for larger values of radiation parameter (R) and higher values of Prandtl number resulted in heat transfer reduction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.