Abstract

AbstractMixed convection heat transfer in a cubical cavity with an isothermally heated blockage inside filled with a hybrid nanofluid (HBNF) is numerically studied. The natural convection is created by the temperature difference between the hot block and the cold lateral walls, while the forced convection is generated by moving the upper wall. The influence of some variables, like the aspect ratio (0.1 ≤ r ≤ 0.5), Richardson number (0 ≤ Ri≤ 20), Reynolds number (50 ≤ Re ≤ 200), volume concentration of nanoparticles (0 ≤ ϕ ≤ 0.06), and the concentration ratio (2:8, 5:5, and 8:2) on the flow field and heat transfer is analyzed. A comparison between hybrid and mono nanofluids (NFs) is realized to investigate the energy transport enhancement. Results show that the increase of each parameter causes an increase of average Nusselt number Nuavg and improves the heat transfer; besides the use of HBNF gives better Nuavg values. Three correlations of the effect of r, ϕ, Ri, and Re on Nuavg are determined for both hybrid and mono NFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call