Abstract
This study presents a novel approach for optimizing the critical buckling load of the stiffened piezolaminated composite plates using a self-adaptive special relativity search (SASRS) algorithm. The fiber orientations in the layers are considered as design variables. The stability equations are first derived based on the classical laminated plate theory (CLPT) with von Karman nonlinearity. The optimization problem is implemented in MATLAB. The optimization results are obtained to indicate the effecs of various boundary conditions, applied voltages, grid shapes, angles of diagonal ribs, and plate aspect ratios on the optimal design. Numerical investigations are carried out for 10-ply symmetrical stiffened piezolaminated plates. The robustness and efficiency of the proposed SASRS algorithm in maximizing the critical buckling load of the stiffened piezolaminated plates are demonstrated by comparing the optimized results from the standard special relativity search (SRS) algorithm. It is found that the proposed optimization method has better performance than the SRS algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.