Abstract

A postbuckling analysis is presented for a simply supported, composite laminated rectangular plate subjected to biaxial compression combined with lateral pressure and resting on a two-parameter (Pasternak-type) elastic foundation. The initial geometrical imperfection of the plate is taken into account. The formulations are based on the classical laminated plate theory, including plate-foundation interaction. The analysis uses a perturbation technique to determine the buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of antisymmetric angle-ply and symmetric cross-ply laminated plates subjected to combined loading and resting on Pasternak-type elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influence played by a number of effects, among them foundation stiffness, the plate aspect ratio, the total number of plies, fibre orientation and initial lateral pressure, is studied. Typical results are presented in dimensionless graphical form.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.