Abstract

In recent years, deep learning has become an emerging research orientation in the field of intelligent monitoring and fault diagnosis for industry equipment. Generally, the success of supervised deep models is largely attributed to a mass of typically labeled data, while it is often limited in real diagnosis tasks. In addition, the diagnostic model trained with data from limited conditions may generalize poorly for conditions not observed during training. To tackle these challenges, adversarial learning is introduced as a regularization into the convolutional neural network (CNN), and a novel deep adversarial convolutional neural network (DACNN) is accordingly proposed in this paper. By adding an additional discriminative classifier, an adversarial learning framework can be developed to train the convolutional blocks with the split data subsets, leading to a minimax two-player game. This process contributes to making the feature representation robust, boosting the generalization ability of the trained model as well as avoiding overfitting with a small size of labeled samples. The comparison studies with respect to conventional deep models on two fault datasets demonstrate the applicability and superiority of proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.