Abstract

In this paper, the initial-value problem for integral-differential equation of the hyperbolic type in a Hilbert space H is considered. The unique solvability of this problem is established. The stability estimates for the solution of this problem are obtained. The difference scheme approximately solving this problem is presented. The stability estimates for the solution of this difference scheme are obtained. In applications, the stability estimates for the solutions of the nonlocal boundary problem for one-dimensional integral-differential equation of the hyperbolic type with two dependent limits and of the local boundary problem for multidimensional integral-differential equation of the hyperbolic type with two dependent limits are obtained. The difference schemes for solving these two problems are presented. The stability estimates for the solutions of these difference schemes are obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.