Abstract

In the present paper, the nonlocal boundary value problem { i d u d t + A u = f ( t ) , 0 < t < T , u ( 0 ) = ∑ m = 1 p α m u ( λ m ) + φ , 0 < λ 1 < λ 2 < ⋯ < λ p ≤ T for the Schrödinger equation in a Hilbert space H with the self-adjoint operator A is considered. Stability estimates for the solution of this problem are established. Two nonlocal boundary value problems are investigated. The first and second order of accuracy difference schemes for the approximate solutions of this nonlocal boundary value problem are presented. The stability of these difference schemes is established. In practice, stability inequalities for the solutions of difference schemes for the Schrödinger equation are obtained. A numerical method is proposed for solving a one-dimensional Schrödinger equation with nonlocal boundary condition. A procedure involving the modified Gauss elimination method is used for solving these difference schemes. The method is illustrated by giving numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.