Abstract

This paper concerns a Fokker-Planck equation on the positive real line modeling nucleation and growth of clusters. The main feature of the equation is the dependence of the driving vector field and boundary condition on a non-local order parameter related to the excess mass of the system.The first main result concerns the well-posedness and regularity of the Cauchy problem. The well-posedness is based on a fixed point argument, and the regularity on Schauder estimates. The first a priori estimates yield Hölder regularity of the non-local order parameter, which is improved by an iteration argument.The asymptotic behavior of solutions depends on some order parameter $ \rho $ depending on the initial data. The system shows different behavior depending on a value $ \rho_s>0 $, determined from the potentials and diffusion coefficient. For $ \rho \leq \rho_s $, there exists an equilibrium solution $ c^ {{ \rm{eq}}} _{(\rho)} $. If $ \rho\le\rho_s $ the solution converges strongly to $ c^ {{ \rm{eq}}} _{(\rho)} $, while if $ \rho > \rho_s $ the solution converges weakly to $ c^ {{ \rm{eq}}} _{(\rho_s)} $. The excess $ \rho - \rho_s $ gets lost due to the formation of larger and larger clusters. In this regard, the model behaves similarly to the classical Becker-Döring equation.The system possesses a free energy, strictly decreasing along the evolution, which establishes the long time behavior. In the subcritical case $ \rho<\rho_s $ the entropy method, based on suitable weighted logarithmic Sobolev inequalities and interpolation estimates, is used to obtain explicit convergence rates to the equilibrium solution.The close connection of the presented model and the Becker-Döring model is outlined by a family of discrete Fokker-Planck type equations interpolating between both of them. This family of models possesses a gradient flow structure, emphasizing their commonality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.