Abstract

Topological phases which host Majorana fermions can not be identified via local order parameters. We give simple nonlocal order parameters to distinguish quasi-one-dimensional (1D) topological superconductors of spinless fermions, for any interacting model in the absence of time reversal symmetry. These string or ``brane'' order parameters are natural for measurements in cold atom systems using quantum gas microscopy. We propose them as a way to identify symmetry-protected topological phases of Majorana fermions in cold atom experiments via bulk rather than edge degrees of freedom. Subsequently, we study two-dimensional (2D) topological superconductors via the quasi-1D limit of coupling $N$ identical chains on the cylinder. We classify the symmetric, interacting topological phases protected by the additional ${\mathbb{Z}}_{N}$ translation symmetry. The phases include quasi-1D analogs of (i) the $p+ip$ chiral topological superconductor, which can be distinguished up to the 2D Chern number mod 2, and (ii) the 2D weak topological superconductor. We devise general rules for constructing nonlocal order parameters which distinguish the phases. These rules encode the signature of the fermionic topological phase in the symmetry properties of the terminating operators of the nonlocal string or brane. The nonlocal order parameters for some of these phases simply involve a product of the string order parameters for the individual chains. Finally, we give a physical picture of one of the topological phases as a condensate of certain defects, which motivates the form of the nonlocal order parameter and is reminiscent of higher dimensional constructions of topological phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.