Abstract

We are concerned with the study of the following nonlinear eigenvalue problem with Robin boundary condition $\begin{cases} -{\rm div}\,(a(x,\nabla u))=λ b(x,u)&\mbox{in} \ Ω\\\dfrac{\partial A}{\partial n}+β(x) c(x,u)=0&\mbox{on}\\partialΩ.\end{cases}$ The abstract setting involves Sobolev spaces with variable exponent. The main result of the present paper establishes a sufficient condition for the existence of an unbounded sequence of eigenvalues. Our arguments strongly rely on the Lusternik-Schnirelmann principle. Finally, we focus to the following particular case, which is a $p(x)$-Laplacian problem with several variable exponents: $\begin{cases} -{\rm div}\,(a_0(x) |\nabla u|^{p(x)-2}\nabla u)=λ b_0(x)|u|^{q(x)-2}u&\mbox{in} \ Ω\\|\nabla u|^{p(x)-2}\dfrac{\partial u}{\partial n}+β(x)|u|^{r(x)-2} u=0&\mbox{on}\\partialΩ.\end{cases}$ Combining variational arguments, we establish several properties of the eigenvalues family of this nonhomogeneous Robin problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.