Abstract
The rolling bearings are one of the most critical components in rotary machinery. To prevent unexpected bearing failure, it is crucial to develop the effective fault detection and diagnosis techniques to realize equipment’s near-zero downtime and maximum productivity. In this paper, a new fault detection and diagnosis method based on Wigner-Ville spectrum entropy (WVSE) is proposed. First, the local mean decomposition (LMD) and the Wigner-Ville distribution (WVD) are combined to develop a new feature extraction approach to extract the fault features in time-frequency domain of the bearing vibration signals. Second, the concept of the Shannon entropy is integrated into the WVD to define the Wigner-Ville spectrum entropy to quantify the energy variation in time-frequency distribution under different work conditions. The research results from the bearing vibration signals demonstrate that the proposed method based on WVSE can identify different fault patterns more accurately and effectively comparing with other methods based on singular spectrum entropy (SSE) or power spectrum entropy (PSE).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.