Abstract
Aiming at the nonstationary and nonlinear characteristics of acoustic impulse response signal in pipeline blockage and the difficulty in identifying the different degrees of blockage, this paper proposed a pattern recognition method based on local mean decomposition (LMD), information entropy theory, and extreme learning machine (ELM). Firstly, the impulse response signals of pipeline extracted in different operating conditions were decomposed with LMD method into a series of product functions (PFs). Secondly, based on the information entropy theory, the appropriate energy entropy, singular spectrum entropy, power spectrum entropy, and Hilbert spectrum entropy were extracted as the input feature vectors. Finally, ELM was introduced for classification of pipeline blockage. Through the analysis of acoustic impulse response signal collected under the condition of health and different degrees of blockages in pipeline, the results show that the proposed method can well characterize the state information. Also, it has a great advantage in terms of accuracy and it is time consuming when compared with the support vector machine (SVM) and BP (backpropagation) model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.