Abstract
Essentially the fault diagnosis of roller bearing is a process of pattern recognition. However, existing pattern recognition method failed to capitalize on the nature of multivariate associations between the extracted fault features. Targeting such limitation, a new pattern recognition method – variable predictive model based class discriminate (VPMCD) is introduced into roller bearing fault identification. The VPMCD consider that all or part of the feature values will exhibit interactions in nature and these associations will have different performances between different classes, which is always true in practice when faults occur in roller bearings. Target to the characteristics of non-stationary and amplitude-modulated and frequency-modulated (AM–FM) of vibration signal picked up under variable speed condition, a fault diagnosis method based upon the VPMCD, order tracking technique and local mean decomposition (LMD) is put forward and applied to the roller bearing fault identification. Firstly, LMD and order tracking analysis method are combined to extract the fault features of roller bearing vibration signals under variable speed condition; Secondly, the feature values are regard as the input of VPMCD classifier; finally, the working condition and fault patterns of the roller bearings are identified automatically by the output of VPMCD classifier. The analysis results from experimental signals with normal and defective roller bearings indicate that the proposed fault diagnosis approach can distinguish the roller bearing status-with or without fault and fault patterns under variable speed condition accurately and effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.