Abstract
Establishing accurate anatomical correspondences plays a critical role in multi-modal medical image registration and region detection. Although many features based registration methods have been proposed to detect these correspondences, they are mostly based on the point descriptor which leads to high memory cost and could not represent local region information. In this paper, we propose a new region descriptor which depicts the features in each region, instead of in each point, as a vector. First, feature attributes of each point are extracted by a Gabor filter bank combined with a gradient filter. Then, the region descriptor is defined as the covariance of feature attributes of each point inside the region, based on which a cost function is constructed for multi-modal image registration. Finally, our proposed region descriptor is applied to both multi-modal region detection and similarity metric measurement in multi-modal image registration. Experiments demonstrate the feasibility and effectiveness of our proposed region descriptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.