Abstract

It is well known that if a random vector with given marginal distributions is comonotonic, it has the largest sum in the sense of the convex order. Cheung (2008) proved that the converse of this assertion is also true, provided that all marginal distribution functions are continuous and that the underlying probability space is atomless. This continuity assumption on the marginals was removed by Cheung (2010). In this short note, we give a new and simple proof of Cheung’s result without the assumption that the underlying probability space is atomless.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.