Abstract
Tail Mean-Variance (TMV) has emerged from the actuarial community as a criterion for risk management and portfolio selection, with a focus on extreme losses. The existing literature on portfolio optimization under the TMV criterion relies on the plug-in approach that substitutes the unknown mean vector and covariance matrix of asset returns in the optimal portfolio weights with their sample counterparts. However, the plug-in method inevitably introduces estimation risk and usually leads to poor out-of-sample portfolio performance. To address this issue, we propose a combination of the plug-in and 1/N rules and optimize its expected out-of-sample performance. Our study is based on the Mean-Variance-Standard-deviation (MVS) performance measure, which encompasses the TMV, classical Mean-Variance, and Mean-Standard-Deviation (MStD) as special cases. The MStD criterion is particularly relevant to mean-risk portfolio selection when risk is measured by quantile-based risk measures. Our proposed combined portfolio consistently outperforms both the plug-in MVS and 1/N portfolios in simulated and real-world datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.