Abstract
It is well-known that if a random vector with given marginal distributions is comonotonic, it has the largest sum with respect to convex order. However, replacing the (unknown) copula by the comonotonic copula will in most cases not reflect reality well. For instance, in an insurance context we may have partial information about the dependence structure of different risks in the lower tail. In this paper, we extend the aforementioned result, using the concept of upper comonotonicity, to the case where the dependence structure of a random vector in the lower tail is already known. Since upper comonotonic random vectors have comonotonic behavior in the upper tail, we are able to extend several well-known results of comonotonicity to upper comonotonicity. As an application, we construct different increasing convex upper bounds for sums of random variables and compare these bounds in terms of increasing convex order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.