Abstract
AbstractSummary:A new phosphorylated derivative of carboxymethylcellulose and amidic carboxymethylcellulose containing one phosphate group for each disaccharide unit was synthesized using sodium trimetaphospahte (STMP) as the phosphating agent. The new polysaccharide was characterized by infrared spectroscopy (FT‐IR) and the amount of phosphate groups was determined by elemental analysis. These modified polysaccharides were used both to prepare 3D scaffolds and functionalize titanium oxide surfaces with the aim to improve the osseointegration with the host tissue. The presence of phosphate groups modify the physical‐chemical properties of the hydrogels with respect to the native ones. The evaluation of the bioactivity of the phosphorylated carboxymethylcellulose hydrogels towards osteoblast‐like cells showed a significant increase in the osteocalcin production. The modified surfaces were chemically characterized by means of X‐ray photoelectron spectroscopy (XPS) and FT‐IR, whereas the surface topography was analysed by Atomic Force Measurements (AFM) measurements before and after the polysaccharide coating. In vitro biological tests using osteoblast‐like cells demonstrated that phosphorylated carboxymethylcellulose functionalized TiO2 surfaces promoted better cell adhesion and significantly enhanced their proliferation. These findings suggest that the phosphate polysaccharide both as a 3D scaffold and as a surface coating promotes osteoblast growth potentially improving the biomaterial osseointegration rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.