Abstract

ABSTRACT In this paper, a new mixed integer programming (MIP) formulation is developed for balancing and scheduling of mixed model assembly lines with disjunctive precedence constraints among assembly tasks. To represent alternative precedence relations, AND/OR assembly graph was adopted. In case of alternative precedence relations, for each product multiple assembly plans exist, which can be represented by a set of alternative precedence subgraphs and only one of such subgraphs should be selected for each product. As the number of subgraphs exponentially increases with the number of disjunctive relations among the tasks, the computational complexity of simultaneous balancing and scheduling along with the assembly subgraph selection increases with the number of alternative precedence relations. Unlike the other MIP approaches known from the literature, the new model does not need the alternative assembly subgraphs to be to explicitly enumerated as input data and then used for indexing the variables. Instead, a new disjunctive precedence selection and task assignment variable and new constraints are introduced to optimally choose one relation for each subset of alternative precedence relations. The optimal solutions for computational examples of balancing and scheduling problems illustrate a superior performance of the new modelling approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.