Abstract

Mixed model assembly line literature involves two problems: balancing and model sequencing. The general tendency in current studies is to deal with these problems in different time frames. However, in today's competitive market, the mixed model assembly line balancing problem has been turned into an operational problem. In this paper, we propose mixed integer programming (MIP) and constraint programming (CP) models which consider both balancing and model sequencing within the same formulation along with the optimal schedule of tasks at a station. Furthermore, we also compare the proposed exact models with decomposition schemes developed for solving different instances of varying sizes. This is the first paper in the literature which takes into account the network type precedence diagrams and limited buffer capacities between stations. Besides, it is the first study that CP method is applied to balancing and scheduling of mixed model assembly lines. Our empirical study shows that the CP approach outperforms the MIP approach as well as the decomposition schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call