Abstract

A new optical detection system for measuring the oscillation of cylindrical cantilevers has been designed. A laser beam is directed perpendicularly to the oscillating plane and is focused on the curved surface of the vibrating probe. The surface reflects the light and a second lens refocuses it onto a two-segment photodiode. The sensitivity of this method lies in the fact that a small displacement of the probe produces a large angular deflection of the reflected laser. Applications of this new system are presented in order to demonstrate its reliability, accuracy, sensitivity, and the possible use in a shear force microscope. All the results are finally analyzed by modeling the motion of the cantilevers using harmonic oscillator theory and the continuous model for oscillating bars. The agreement between experimental data and models is well inside the experimental errors confirming the possibility of using this system to accurately study the dynamics of cylindrical cantilevers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.