Abstract

Breast phantoms produced with tissue-equivalent materials are used in an attempt to simulate glandular and adipose tissues, in terms of X-ray attenuation and density. In this work, a set of breast tissue-equivalent phantoms (BTE phantoms) with semicircular shapes of different thicknesses and compositions were produced. Such phantoms may be used in the measurement of the incident air kerma (K(i)) and the mean glandular dose (D(G)) delivered to patients undergoing mammography. To characterise the materials used to produce the phantoms, a series of 17-keV X-ray attenuation coefficient measurements were performed. The carbon-nitrogen-hydrogen elemental composition and the densities of the tissue-equivalent materials were also determined and compared with values available in the literature. Linear attenuation coefficients of 0.724 and 0.923 cm(-1) were determined, respectively, for adipose and glandular tissues. Such values agree with data available in the literature. On the basis of the results obtained in this work, it is suggested that BTE phantoms are used instead of polymethyl methacrylate phantoms to select exposure parameters (kV, mAs and target/filter combination) specific for breast glandularities from 0 to 50 % in the optimisation of doses in mammography.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.