Abstract

Poisson regression is a very commonly used technique for modeling the count data in applied sciences, in which the model parameters are usually estimated by the maximum likelihood method. However, the presence of multicollinearity inflates the variance of maximum likelihood (ML) estimator and the estimated parameters give unstable results. In this article, a new linearized ridge Poisson estimator is introduced to deal with the problem of multicollinearity. Based on the asymptotic properties of ML estimator, the bias, covariance and mean squared error of the proposed estimator are obtained and the optimal choice of shrinkage parameter is derived. The performance of the existing estimators and proposed estimator is evaluated through Monte Carlo simulations and two real data applications. The results clearly reveal that the proposed estimator outperforms the existing estimators in the mean squared error sense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call