Abstract

This paper introduces a new modification to the convective Cahn–Hilliard equation and a lattice Boltzmann framework to simulate liquid–solid phase transitions in multicomponent systems. The model takes into account changes in properties, such as density, caused by solidification, which leads to volume expansion or contraction. After validating the proposed model against classical problems and experimental data, the solidification of a sessile droplet was investigated in detail. Results of numerical simulations suggest that the environmental conditions are as important as the surface condition in deciding the freezing time and the final shape of the droplet. The environmental properties can also affect the freezing time indirectly through interaction with surface wettability. It has been demonstrated that hydrophobic surfaces may lose their advantages over hydrophilic surfaces in terms of anti-icing performance when primary solidification is initiated from the interface between the droplet and the environment fluid. The deformations of droplets, either with contraction or expansion, were confirmed and compared in different environments. This study offers a new perspective on droplet solidification by exposing the strong influence of environmental conditions and meanwhile provides a useful numerical method to predict the phase change process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call