Abstract

A lateral MOS-controlled thyristor (LMCT) structure that uses an MOS gate to turn it both on and off is presented. The device structure offers improved maximum turn-off current capability and forward voltage drop. The former is achieved by using a DMOS transistor and a parasitic vertical p-n-p transistor, while the latter is achieved by eliminating a parasitic lateral p-n-p transistor in the conventional structure. The device utilizes the resurf technique to achieve high area efficiency, breakdown voltage, and reliability. Devices that have more than 250-V forward blocking capability were fabricated in dielectrically isolated silicon tubs using the standard bipolar-CMOS-DMOS process.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call