Abstract
This paper describes the design of a new electromechanical ski binding whereby release in both twist and forward bending is controlled electronically and the release level in twist is modulated electronically based on the neural stimulation of muscles in the quadriceps group. To provide signals for controlling release in the two modes, the binding incorporates two dynamometers. Each dynamometer measures loads that have been shown to correlate strongly (r2>0.90) to torsional and bending moments at the lower leg injury sites. Although the binding consists of both a toepiece and heelpiece, the toepiece does not permit release of the boot from the ski in the twist mode but rather serves as one of the dynamometers. Consequently the heelpiece was designed to provide the release function in both modes. Release is realized by a low-force solenoid that actuates a multilink trigger mechanism. To prove feasibility, a prototype was constructed and evaluated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have