Abstract

The cylindrical gate tunnel FET (CG-TFET) is one of the potential candidates for future nano-technology, as it exhibit greater scaling capability and low subthreshold swing (SS) as compared to conventional MOSFET. In this paper, a new analytical approach is proposed to extract the gate dependent threshold voltage for CG-TFET. The potential distribution and electric field distribution in the cylindrical channel has been obtained using the 2-D Poisson’s equation which in turn computes the shortest tunneling distance and tunneling current. The threshold voltage is extracted using peak transconductance change method based on the saturation of tunneling barrier width. The impact of scaling of effective oxide thickness, cylindrical pillar diameter and gate length on the threshold voltage has been investigated. The consistency of the proposed model is validated with the TCAD simulated results. The present model can be a handful for the study of switching behavior of TFET.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.