Abstract

For the first time, a pseudo-two-dimensional (2D) approach is extended from a rectangular device structure to a cylindrical one. A pseudo-2D model applying Gauss's law in the cylindrical channel depletion region for undoped or lightly doped surrounding gate (SRG) silicon metal oxide semiconductor field effect transistor (MOSFETs) working in subthreshold regime is presented. From this pseudo-2D analysis, electrostatic potentials, current characteristics, the threshold voltage roll-off, the drain-induced barrier lowering and the subthreshold swing are explicitly modelled. The obtained analytical model has been extended to develop a model for transconductance-to-drain current ratio (g m/I d) in weak inversion regime. Analogue figures of merit of SRG MOSFETs are studied, including transconductance efficiency g m/I d, intrinsic gain and output resistance. The trends related to their variations along the downscaling of dimension are provided. In order to validate our model, the modelled expressions are compared with the simulated characteristics obtained from ATLAS device simulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.