Abstract
In a recent article, Cardoso de Oliveira and Ferreira have proposed a multivariate extension of the univariate chi-squared normality test, using a known result for the distribution of quadratic forms in normal variables. In this article, we propose a family of power divergence type test statistics for testing the hypothesis of multinormality. The proposed family of test statistics includes as a particular case the test proposed by Cardoso de Oliveira and Ferreira. We assess the performance of the new family of test statistics by using Monte Carlo simulation. In this context, the type I error rates and the power of the tests are studied, for important family members. Moreover, the performance of significant members of the proposed test statistics are compared with the respective performance of a multivariate normality test, proposed recently by Batsidis and Zografos. Finally, two well-known data sets are used to illustrate the method developed in this article as well as the specialized test of multivariate normality proposed by Batsidis and Zografos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Communications in Statistics - Simulation and Computation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.