Abstract

We propose a multivariate extension of the univariate chi-squared normality test. Using a known result for the distribution of quadratic forms in normal variables, we show that the proposed test statistic has an approximated chi-squared distribution under the null hypothesis of multivariate normality. As in the univariate case, the new test statistic is based on a comparison of observed and expected frequencies for specified events in sample space. In the univariate case, these events are the standard class intervals, but in the multivariate extension we propose these become hyper-ellipsoidal annuli in multivariate sample space. We assess the performance of the new test using Monte Carlo simulation. Keeping the type I error rate fixed, we show that the new test has power that compares favourably with other standard normality tests, though no uniformly most powerful test has been found. We recommend the new test due to its competitive advantages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.