Abstract

The prediction of metal bioavailability in soils is critical to metal risk assessments and the amount of dissolved metal in soils is a key factor determining bioavailability. Because the recently developed geochemical multi-surface models (MSMs) offer a promising tool for the determination of metal partitioning in soils, in this study, a MSM based on generic parameters was used to assess the bioavailability of Cd in wheat (Triticum aestivum L.) growing in 12 soils with a wide range of properties. The amount of MSM-calculated dissolved Cd correlated strongly with the amount of Cd uptake by wheat (R2=0.873 for roots and R2=0.837 for shoots), and the model's performance was better than that of chemical extraction methods (0.01M CaCl2, 0.43M HNO3 and soil total Cd). The reactive fraction of soil organic matter, the soil/solution ratio, and the inclusion/exclusion of background cations influenced the calculation results. The best calculation condition was optimized. The application of the MSM was also examined in 84 wheat-soil samples from the field. The amount of Cd in wheat seeds had a stronger correlation with the amount of MSM-predicted Cd than with the amount of Cd obtained using chemical extraction methods. Our results suggested that MSM-calculated Cd is an effective indicator of the bioavailability of Cd in soils and demonstrated the utility of the method as a tool to assess the risk of Cd contamination in soils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call