Abstract
Interval uncertainty can cause uncontrollable variations in the objective and constraint values, which could seriously deteriorate the performance or even change the feasibility of the optimal solutions. Robust optimization is to obtain solutions that are optimal and minimally sensitive to uncertainty. Because large numbers of complex engineering design problems depend on time-consuming simulations, the robust optimization approaches might become computationally intractable. To address this issue, a multi-objective robust optimization approach based on Kriging and support vector machine (MORO-KS) is proposed in this paper. Firstly, the feasible domain of main problem in MORO-KS is iteratively restricted by constraint cuts formed in the subproblem. Secondly, each objective function is approximated by a Kriging model to predict the response value. Thirdly, a Support Vector Machine (SVM) model is constructed to replace all constraint functions classifying design alternatives into two categories: feasible and infeasible. A numerical example and the design optimization of a microaerial vehicle fuselage are adopted to test the proposed MORO-KS approach. Compared with the results obtained from the MORO approach based on Constraint Cuts (MORO-CC), the effectiveness and efficiency of the proposed MORO-KS approach are illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.