Abstract

A new approach for multi-objective robust design optimization has been proposed and applied to a real-world design problem with a large number of objective functions. The present approach is assisted by response surface approximation and visual data-mining, which results in two major gains regarding computational time and data interpretation. The Kriging model for response surface approximation can realize accurate predictions of robustness measures, and dramatically reduces the computational time for objective function evaluation. In addition, the use of self-organizing maps as a datamining technique allows visualization of complicated design information between optimality and robustness of design in a comprehensible two-dimensional form. Therefore, the extraction and interpretation of trade-off relations between optimality and robustness of design, and also the location of sweet-spots in the design space, can be performed in a comprehensive manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.