Abstract
There are a large number of real-world engineering design problems that are multi-objective and multiconstrained, having uncertainty in their inputs. Robust optimization is developed to obtain solutions that are optimal and less sensitive to uncertainty. Since most of complex engineering design problems rely on time-consuming simulations, the robust optimization approaches may become computationally intractable. To address this issue, an advanced multi-objective robust optimization approach based on Kriging model and support vector machine (MORO-KS) is proposed in this work. First, the main problem in MORO-KS is iteratively restricted by constraint cuts formed in the subproblem. Second, each objective function is approximated by a Kriging model to predict the response value. Third, a support vector machine (SVM) classifier is constructed to replace all constraint functions classifying design alternatives into two categories: feasible and infeasible. The proposed MORO-KS approach is tested on two numerical examples and the design optimization of a micro-aerial vehicle (MAV) fuselage. Compared with the results obtained from other MORO approaches, the effectiveness and efficiency of the proposed MORO-KS approach are illustrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computing and Information Science in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.