Abstract

Routing in nanometer nodes creates an elevated level of importance for low-congestion routing. At the same time, advances in mathematical programming have increased the power to solve complex problems, such as the routing problem. Hence, new routing methods need to be developed that can combine advanced mathematical programming and modeling techniques to provide low-congestion solutions. In this paper, a hierarchical mathematical programming-based global routing technique that considers congestion is proposed. The main contributions presented in this paper include (i) implementation of congestion estimation based on actual routing solutions versus purely probabilistic techniques, (ii) development of a congestion-based hierarchy for solving the global routing problem, and (iii) generation of a robust framework for solving the routing problem using mathematical programming techniques. Experimental results illustrate that the proposed global router is capable of reducing congestion and overflow by as much as 36% compared to the state-of-the-art mathematical programming models.

Highlights

  • VLSI physical design is a way of producing a physical layout for a circuit from an abstract set of circuit components, connections, and requirements

  • The percentage of edges overflowing in the routing supply integer relaxation (RSIR) congestion map is shown in Column 4

  • The router is hierarchical in nature and utilizes a congestion map calculated before routing to identify congested edges

Read more

Summary

Introduction

VLSI physical design is a way of producing a physical layout for a circuit from an abstract set of circuit components, connections, and requirements. Global routing is an important phase of VLSI physical design which determines the approximate pathways of wires, or interconnects, in the layout. The importance of this phase has increased since the interconnect delay exceeds device delay at modern nanometer and gigahertz process nodes [1]. As circuit design complexity has increased, developing global routing solutions that eliminate overflow and reduce congestion has become a key goal of global routers. A mathematical programming-based global router is proposed.

Global Routing Background
The Proposed ILP-Based Router to Effectively Maximize Routed Nets
Experimental Results for the Proposed Router
Proposed ILP Router Performance
Summary
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.