Abstract
The increasing availability of spaceborne hyperspectral satellite imagery opens new opportunities for forest habitat mapping and monitoring, but the limitation of its generally low temporal resolution must be considered. In this study, we compare the ability of single-date PRISMA (PRecursore IperSpettrale della Missione Applicativa), the hyperspectral satellite from the Italian Space Agency, with that of both single-date and multi-date Sentinel-2 (S2) and PlanetScope (PS) to detect and correctly classify various EUNIS habitat types distributed over a relatively small spatial extent (6000 ha) in a natural reserve in Central Italy. The case study deals with multiple levels of spectral similarity, as the dominant canopy species of the target forest habitat classes belong to the same genus (Quercus spp., both deciduous and evergreen species) as well as of different taxa (Pinus and Fraxinus spp.). We performed a pixel-based classification with the Random Forest algorithm using a set of 28 spectral indices computed on PRISMA bands, 22 on S2, and 12 on PS. A Canopy Height Model (CHM) was also used as an input variable for the classification. Our results showed that PRISMA considerably outperforms the two multispectral satellites in single-date classifications, with an overall accuracy of 84 % compared to PlanetScope's 69 % and Sentinel-2's 72 %. Regarding the comparison between multi-date multispectral and single-date hyperspectral, 10-fold cross-validation results revealed that S2 achieves an out-of-bag error rate of approximately 16 %, while PRISMA achieves 17 % and PS 19 %. This demonstrates that a combination of spectral indices calculated during the growing season can capture phenological or physiological differences among the target species, which consequently results in a significant improvement in the classification accuracy of the multispectral sensors. Ultimately, classification results from all three sensors were combined to create probability maps for each forest class, identifying areas classified with a higher degree of certainty by each satellite tested and potentially contributing to forest management by defining areas with varying conservation levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.