Abstract
Modelling and controlling heat transfer in rotating electrical machines is very important as it enables the design of assemblies (e.g., motors) that are efficient and durable under multiple operational scenarios. To address the challenge of deriving accurate data-driven estimators of key motor temperatures, we propose a multi-objective strategy for creating Linear Regression (LR) models that integrate optimised synthetic features. The main strength of our approach is that it provides decision makers with a clear overview of the optimal tradeoffs between data collection costs, the expected modelling errors and the overall explainability of the generated thermal models. Moreover, as parsimonious models are required for both microcontroller deployment and domain expert interpretation, our modelling strategy contains a simple but effective step-wise regularisation technique that can be applied to outline domain-relevant mappings between LR variables and thermal profiling capabilities. Results indicate that our approach can generate accurate LR-based dynamic thermal models when training on data associated with a limited set of load points within the safe operating area of the electrical machine under study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Evolutionary Learning and Optimization
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.