Abstract
Correctly identifying influential nodes in a complex network and implementing targeted protection measures can significantly enhance the overall security of the network. Currently, indicators such as degree centrality, closeness centrality, betweenness centrality, H-index, and K-shell are commonly used to measure node influence. Although these indicators can identify critical nodes to some extent, they often consider node attributes from a narrow perspective and have certain limitations. Therefore, evaluating the importance of nodes using most existing indicators remains incomplete. In this paper, we propose the multi-attribute CRITIC-TOPSIS network decision indicator, or MCTNDI, which integrates closeness centrality, betweenness centrality, H-index, and network constraint coefficients to identify critical nodes in a network. This indicator combines information from multiple perspectives, including local neighborhood importance, network topological location, path centrality, and node mutual information, thereby solving the issue of the one-sided perspective of single indicators and providing a more comprehensive measure of node importance. Additionally, MCTNDI is validated through the analysis of several real-world networks, including the Contiguous USA network, Dolphins network, USAir97 network, and Tech-routers-rf network. The validation is conducted from four aspects: the results of simulated network attacks, the distribution of node importance, the monotonicity of rankings, and the similarity of indicators, illustrating MCTNDI's effectiveness in real networks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have