Abstract

In this paper, we study a modified weak Galerkin finite element method (MWG-FEM) on anisotropic triangular meshes for a class of parabolic equations. Different from conventional weak Galerkin methods, the MWG-FEM replaces the boundary functions by the average of interior functions, which possesses flexibility in the approximation functions and mesh generation. Moreover, MWG-FEM is compatible with anisotropic meshes and suitable for solving problems with anisotropic property. By using the anisotropic interpolation and projection operators, the optimal order error estimate in L2 norm is derived. Numerical experiments are performed to demonstrate the stability and efficiency of the method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.