Abstract

AbstractA new weak Galerkin (WG) finite element method is introduced and analyzed in this article for the biharmonic equation in its primary form. This method is highly robust and flexible in the element construction by using discontinuous piecewise polynomials on general finite element partitions consisting of polygons or polyhedra of arbitrary shape. The resulting WG finite element formulation is symmetric, positive definite, and parameter‐free. Optimal order error estimates in a discrete H2 norm is established for the corresponding WG finite element solutions. Error estimates in the usual L2 norm are also derived, yielding a suboptimal order of convergence for the lowest order element and an optimal order of convergence for all high order of elements. Numerical results are presented to confirm the theory of convergence under suitable regularity assumptions. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 30: 1003–1029, 2014

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.