Abstract
AbstractThe high penetration of renewable energy sources (RES) results in a low‐inertia, weak power grid. To mitigate this and restore system inertia, it has been widely proposed to operate the inverters of RES units to mimic synchronous generators; this technology is known as a virtual synchronous generator (VSG). In weak grids there is, however, strong coupling between active power () and reactive power (), and any VSG technique therefore requires decoupling in order to operate effectively. This article proposes a new decoupling technique based on the transformation of the power circle of a VSG connected to a weak grid: first, the power circle is translated from its designed position to that of a conventional synchronous generator (SG) connected to a strong grid, achieving partial decoupling. Then, to achieve full decoupling, the authors propose further to modulate the radius of the translated power circle; this is achieved using a series resistance‐capacitance–inductance () circuit which is virtually implemented in the VSG controller. The efficacy of the proposed scheme is validated using a modified synchronverter connected to the weak grid in representative loading scenarios. It is demonstrated that the technique achieves a decoupled control for the synchronverter connected in a weak grid. Moreover, the modified synchronverter is capable of supporting frequency and voltage regulation in the grid without inducing large transient grid currents during mild frequency and voltage variations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.