Abstract
This paper proposes a millimeter-wave (mmWave) 5G front end module (FEM) based on multiple gallium nitride (GaN) monolithic microwave integrated circuits (MMICs) with 5G new radio (NR) performance verification. The proposed structure is configured by a wide band GaN single-pole double-throw (SPDT) switch MMIC, a GaN low-noise amplifier (LNA) MMIC, and a GaN power amplifier (PA) MMIC with the target operation band from 26.5 GHz to 29.5 GHz. The LNA and PA MMICs are designed with 150 nm GaN/SiC technology, and the SPDT MMIC is designed with 100 nm GaN/Si. The LNA MMIC shows the measured noise figure less than or equal to 2.52 dB within the operation band. The PA MMIC is based on a two-stage configuration and shows about 35 dBm measured saturated power with power-added efficiency better than 34% within the operation band. Also, the SPDT MMIC is based on an artificial transmission line configuration for wideband performance and shows that the measured insertion loss is less than 1.6 dB, and the measured isolation is higher than 25 dB within the operation band. Furthermore, all MMICs are integrated within a single carrier as an FEM and successfully verified by 5G NR test signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electromagnetic Engineering and Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.