Abstract

Miniaturized on-chip micropumps with no moving parts are intriguing components for advanced lab-on-chip systems. Magnetohydrodynamic pumping is one possibility but requires further research with respect to microsystems design and fabrication. In this paper, the design and fabrication of a magnetohydrodynamic micropump is discussed using a composite of patterned glass and stacked dry film photoresist as demonstrator platform. The magnetohydrodynamic pumping effect is achieved by the superposition of an electric ion current generated by integrated electrodes and an external magnetic field provided by a permanent magnet. As test electrolytes, potassium chloride with potassium hexacyanoferrate (III) and potassium hexacyane iron (II) were used. Seamless fluid channel sidewalls were achieved from stacked dry film resists, which appear to be cast from a single mold. A liquid-tight sealing of the microchannels was realized by covering them with a thermally bonded laser-structured glass lid. Although, a complete characterization of the pump performance was not yet realized, the micropump in its current state serves as a technology demonstrator for further research of microfluidic on-chip micropumps that utilize the magnetohydrodynamic effect and also for other microfluidic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call